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Abstract: This paper discusses a novel pairwise test data generation strategy,  
called Intersection Residual Pair Set Strategy (IRPS), based on an efficient data 
structure implementation. In doing so, this paper also demonstrates the 
correctness of IRPS as well as compares its effectiveness against the existing 
strategies including Automatic Efficient Test Generator (AETG) and its 
variations, In Parameter Order (IPO), Simulated Annealing (SA), Genetic 
Algorithm (GA), Ant Colony Algorithm (ACA), All Pairs, G2Way and Jenny. 
Empirical results demonstrate that IRPS, in most cases, outperforms other 
strategies as far as the number of generated test data and the execution time are 
concerned. 
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1 Introduction 

Our continuous dependencies on software to assist as well as facilitate our daily  
chores often raise dependability issue particularly when software is being employed in 
harsh and life threatening or (safety) critical applications. Here, rigorous software testing 
becomes immensely important. Many combinations of possible input parameters, 
hardware/software environments and system conditions need to be tested and verified 
against for conformance based on the system’s specification. Given limited time and 
resources, it is often impossible to exhaustively consider all of these combinations. Thus, 
a sampling strategy is needed to select a subset of these combinations in a systematic 
manner. 

Combinatorial explosion problem (Cohen et al., 1996; Zamli et al., 2007) poses one 
of the biggest challenges in modern computer science because it often defies traditional 
approaches to analysis, verification, monitoring and control. A number of techniques 
have been explored in the past to address this problem. Undoubtedly, parallel testing can 
be employed to reduce the time required for performing the tests. Nevertheless,  
as software and hardware are getting more complex than ever, parallel testing approach 
becomes immensely expensive owing to the need for faster and higher capability 
processors along state-of-the-art computer hardware. Apart from parallel testing, 
systematic random testing (Yan and Zhang, 2006) could also be another option. 
However, systematic random testing tends to dwell on unfair distribution of test cases. 
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A more recent and systematic solution to this problem is based on pairwise testing 
strategy. Earlier work suggests that pairwise sampling strategy (i.e., based on two-way 
parameter interaction) can be effective to uncover between 60% and 80% of faults  
(Kuhn et al., 2004; Lei et al., 2007). Here, any two combinations of parameter values are 
to be covered by at least one test (Cohen et al., 1996; Lei and Tai, 2002). Because 
combinatorial explosion problem is NP-complete, it is often unlikely that efficient 
strategy exists that can always generate optimal test set (i.e., each interaction pair is 
covered by only one test). Furthermore, the size of the minimum pairwise test set also 
grows logarithmically with the number of parameters and quadratically with the number 
of values (Cohen et al., 1996; Cohen, 2004). Motivated by such a challenge, we have 
developed an efficient pairwise test data generation strategy, called IRPS. IRPS is our 
research vehicle to investigate efficient strategy and data structure implementation to 
generate optimal pairwise test set that can eventually be generalised for higher order 
interactions as far as software testing is concerned. 

This paper is organised as follows. Section 2 highlights the related work. Section 3 
describes the IRPS in detail. Section 4 highlights our evaluation including the proof of 
correctness, a case study to show its effectiveness in testing, as well as comparison 
against existing strategies in terms of the execution time as well as the number of 
generated test data, and gives further optimisation to IRPS (Younis et al., 2008b).  
Finally, Section 5 gives our conclusion and suggestion for future work. 

2 Related work 

Existing strategies can be categorised into two dominant approaches, i.e., algebraic 
approaches and computational approaches (Lei et al., 2007). 

Algebraic approaches construct test sets using predefined rules. Most algebraic 
approaches compute test sets directly by a mathematical function (Lei et al., 2007).  
Thus, the computations involved in algebraic approaches are typically lightweight, and in 
some cases, algebraic approaches can produce the most optimal test sets. However, 
algebraic approaches often impose restrictions on the system configurations to which 
they can be applied (Lei et al., 2007; Yan and Zhang, 2006). In a nut shell, algebraic 
approaches are often based on the extensions of the mathematical methods for 
constructing Orthogonal Arrays (OAs) (Bush, 1952; Mandl, 1985) and Covering Arrays 
(CAs) (Hartman and Raskin, 2004; Zekaoui, 2006). Some variations of the algebraic 
approach also exploit recursion to permit the construction of larger test sets from smaller 
ones (see Williams and Probert, 1996; Maity and Nayak, 2005). 

Unlike algebraic approaches, computational approaches often rely on the generation 
of the all pair combinations. On the basis of all pair combinations, the computational 
approaches iteratively search the combinations space to generate the required test case 
until all pairs have been covered. Unlike algebraic approaches, the computational 
approaches can be applied to arbitrary system configurations. Nevertheless, in the case 
where the number of pairs to be considered is significantly large, adopting computational 
approaches can be expensive owing to the need to consider explicit enumeration from all 
the combination space. 
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Adopting the computational approaches as the main basis, an AETG (Cohen et al., 
1997) and its variant (AETG2) employ a greedy algorithm to construct the test case,  
i.e., each test covers as many uncovered combinations as possible. Because AETG uses 
random search algorithm, the generated test case is highly non-deterministic  
(i.e., the same input parameter model may lead to different test suites (Grindal et al., 
2004). Other variants to AETG that use stochastic greedy algorithms are GA and ACA 
(Shiba et al., 2004). In some cases, they give optimal solution than original AETG, 
although they share the common characteristic as far as being non-deterministic in nature. 

IPO strategy (Lei and Tai, 1998, 2002) builds a pairwise test set for the first two 
parameters. Then, IPO strategy extends the test set to cover the first three parameters, and 
continues to extend the test set until it builds a pairwise test set for all the parameters. In 
this manner, IPO generates the test case with greedy algorithms similar to AETG. 
Nevertheless, apart from deterministic in nature, covering one parameter at a time allows 
the IPO strategy to achieve a lower order of complexity than AETG. All Pairs and Jenny 
strategies (i.e., downloadable tools) appear to share the same property as far as producing 
deterministic test cases is concerned although little is known about the actual strategies 
employed owing to limited availability http://www.satisfice.com, http://www.Burtle 
burtle.net/bob/math and Copeland (2004). 

Schroeder and Korel (2000) developed a rather unique combinatorial strategy based 
on the input and output relationship. If one or more parameters are known to have 
insignificant effect on the system (i.e., do not care), then the strategy randomly selects the 
appropriate replacement of the do-not-care value to perform the reduction. Although 
useful for system with known input output relationship, no reduction is possible if all the 
parameters have the same importance. 

As far as other non-greedy strategies are concerned, some approaches opted to adopt 
heuristic search techniques such as hill climbing and SA (Yan and Zhang, 2006). Briefly, 
hill climbing and SA strategies start from some known test set. Then, a series of 
transformations were applied (starting from the known test set) until an optimum set is 
reached to cover all the pairwise combinations (Yan and Zhang, 2006). Unlike AETG 
and IPO, which build a test set from scratch, heuristic search techniques can predict  
the known test set in advance. As such, heuristic search techniques can produce  
smaller test sets than AETG and IPO, but they typically take longer time to complete  
(Lei et al., 2007). 

Adopting the computational approaches as its basis, the G2Way strategy actually 
depends on two algorithms: the pair generation algorithm and the backtracking algorithm. 
The pair generation algorithm exploits row indexes to facilitate the storing and searching 
of pairs, the technique similar to IPOG. The backtracking algorithm iteratively traverses 
the pairwise sets to combine pairs with common parameter values to complete a test suite 
(Klaib et al., 2008). 

3 IRPS Background 

Adopting the computational approaches as its basis, the IRPS for generating pairwise test 
data set takes the following steps: 

Step 1: Generates all pairs and stores them into compact linked list called Pi. 
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Step 2: Searches the Pi list and takes the desired weight of the candidate case as a test 
case then deletes it from the Pi list. 

Step 3: Repeats step 2 until the Pi list is empty. 

As indicated earlier, the generated pairs are stored in compact linked list called Pi,  
which is a linked list of linked lists. For a test set with N parameters, the Pi list contains 
(N – 1) linked list. Each linked list contains nodes equal to the number of values defined 
by its parameter as well as an array of linked list that represents the pair of all other 
variables in the next linked lists. 

To understand how the Pi list works, consider a four-3-valued parameters system  
(see Table 1): A = {a0, a1, a2}, B = {b0, b1, b2}, C = {c0, c1, c2} and D {d0, d1, d2}.  
In this example, we have 24

2 3 
 
 

 = 54 possible pairs of combinations. 

Table 1 Example for four parameters with 3-valued inputs 

A B C D 

a0 b0 c0 d0 
a1 b1 c1 d1 
a2 b2 c2 d2 

In this case, the complete Pi linked list can be visualised as in Table 2 given earlier. Node 
a0 with the pairs linked list array contains the following pairs (<a0, b0>, <a0, b1>, 
<a0, b2>, …, <a0, d2>). Here, this list contains only pairs that are based on a0. Similarly, 
the same observation can be seen with other nodes in the lists. The significance  
of such arrangement is the fact that less storage unit is required when compared  
with storing all pairs in clear pairwise combinations. Considering the aforementioned 
example and assuming each variable takes a unit of storage, then arranging in clear 
pairwise combinations would require (54 × 2 = 108) storage unit. Using similar 
calculation, adopting our arrangement strategy requires merely 3 + (3 × 9) + 3 + (3 × 6) 
+ 3 + (3 × 3) = 63 storage unit. 

Table 2 Pi Linked list for storing combination pairs for four 3-valued parameters 

(index) i = 0 i = 1 i = 2 
a0 b0 c0 

b0blb2 c0c1c2 d0d1d2 
c0clc2 d0d1d2  
d0dld2   

a1 b1 c1 
b0b1b2 c0c1c2 d0d1d2 
c0c1c2 d0d1d2  
d0d1d2   

a2 b2 c2 
b0b1b2 c0c1c2 d0d1d2 
c0c1c2 d0d1d2  
d0d1d2   



   

 

   

   
 

   

   

 

   

    Assessing IRPS as an efficient pairwise test data generation strategy 95    
 

    
 
 

   

   
 

   

   

 

   

       
 

To describe the IRPS in detail, it is necessary to define a number of terminologies.  
The weight of the candidate test case is defined as the number of pairs that are covered by 
that candidate. For example, the test case combination of a0b0c0d0 covers the pairs 
(<a0, b0>,<a0, c0>,<a0, d0>,<b0, c0>,<b0, d0>, and <c0, d0>) and the variables 
b0,c0,d0 in node a0, c0,d0 in node b0, and finally d0 in node c0, so its weight = 6.  
The maximum weight, wmax, for N parameters can be calculated by the following: 

wmax = N × (N – 1)/2. 

Here, if N = 4, then wmax = 4 × 3/2 = 6. The miss variable is defined as the difference 
between the maximum weight and the weight of the candidate test case. The intersection 
of node in the list i with the list (i + 1) is defined as the intersection between the node and 
all nodes given by the first row. IRPS constructs a double linked list that stores the 
original i node and the intersection with the second node in i + 1 list, as well as the rest of 
the nodes. If the first row in the pairs array is empty, the intersection process will be 
performed with all values of the nodes in the next list and the miss variable is reduced by 
one (if miss > 0). Otherwise, the intersection process will be terminated and the iteration 
moves to the next node. The candidate test case is obtained by taking the node value in 
each node in the double linked list. For the last node, the candidate test case takes the 
current value and the first element in the pair array. The candidate test case is taken as a 
test case only if its weight satisfies the desired weight criteria. If not, the intersection 
process will continue with the other nodes in the list (by deleting the last node in the 
double linked list and replace it with the intersection with next node in the list, or when 
there is no next node in the list, the strategy will delete the last two nodes and continue 
with the iteration). In other words, the intersection process goes horizontally when the 
target weight is not found and grows vertically in recursive fashion. Finally, the delete 
operation operates by deleting each variable (if they exist) in each node. 

Figure 1 depicts the search algorithm for the proposed IRPS. Here, the algorithm  
is terminated whenever the Pi list is empty to guarantee that all pairs are covered and 
each pair only appears at most once in the final generated test cases (i.e., to achieve 
optimum solution). 

Figure 1 The search algorithm 

 

Referring to our earlier example with four parameters and three values, the test set is 
generated with its weight and miss values using IRPS are given in Table 3. 
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Table 3 The generated test set 

No. Test case Miss Weight 

T1 a0b0c0d0 0 6 
T2 a0blcldl 0 6 
T3 a0b2c2d2 0 6 
T4 a1b0c1d2 0 6 
T5 a1b1c2d0 0 6 
T6 a1b2c0d1 0 6 
T7 a2b0c2d1 0 6 
T8 a2b1c0d2 0 6 
T9 a2b2c1d0 0 6 

4 Evaluation 

Our evaluation has four main goals. First, we want to demonstrate the correctness of 
IRPS. Second, we want to demonstrate the use of IRPS for system-level testing.  
Third, we intent to investigate the growth in the size of the test sets generated by IRPS, as 
well as the time taken to produce those test sets based on the given number of parameters 
and values. In doing so, we suggest adding artificial parameters and values method to 
ensure optimal test case. Finally, we want to compare the performance of IRPS against 
existing tools particularly in terms of the size and the time taken to produce the test sets. 
In the next subsections, we will present our complete evaluations based on the 
aforementioned goals. 

4.1 Demonstration of correctness 

In this section, we will focus on demonstrating the correctness of the IRPS by analysing 
the resulting test case set. Here, we aim to show that IRPS gives optimum results, i.e., all 
pairs of combinations are covered at least once. To achieve this goal, we developed 
IRPS_Prover algorithm that works as given in Figure 2. 

Figure 2 IRPS_Prover algorithm 
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Table 4 shows the pairs of combination, corresponding location in the generated test case 
(case) and finally the number of appearance (#) for the generated test case given in  
Table 3. 

From the table, we observe that each combination pair appears exactly one  
(which means that the number of generated test cases is optimal number) and there is no 
missing pair (which means that our strategy is correct). 

Table 4 The location of each pair in the generated test case and its appearance 

Pairs Case # Pairs Case # Pairs Case # 

a0, b0 T1 1 a1, b0 T4 1 a2, b0 T7 1 
a0, c0 T1 1 a1, c0 T6 1 a2, c0 T8 1 
a0, d0 T1 1 a1, d0 T5 1 a2, d0 T9 1 
a0, b1 T2 1 a1, b1 T5 1 a2, b1 T8 1 
a0, c1 T2 1 a1, c1 T4 1 a2, c1 T9 1 
a0, d1 T2 1 a1, d1 T6 1 a2, d1 T7 1 
a0, b2 T3 1 a1, b2 T6 1 a2, b2 T9 1 
a0, c2 T3 1 a1, c2 T5 1 a2, c2 T7 1 
a0, d2 T3 1 a1, d2 T4 1 a2, d2 T8 1 
b0, c0 T1 1 b1, c0 T8 1 b2, c0 T6 1 
b0, d0 T1 1 b1, d0 T5 1 b2, d0 T9 1 
b0, c1 T4 1 b1, c1 T2 1 b2, c1 T9 1 
b0, d1 T7 1 b1, d1 T2 1 b2, d1 T6 1 
b0, c2 T7 1 b1, c2 T5 1 b2, c2 T3 1 
b0, d2 T4 1 b1, d2 T8 1 b2, d2 T3 1 
c0, d0 T1 1 c1, d0 T9 1 c2, d0 T5 1 
c0, d1 T6 1 c1, d1 T2 1 c2, d1 T7 1 
c0, d2 T8 1 c1, d2 T4 1 c2, d2 T3 1 

4.2 Effectiveness of IRPS 

In accessing the effectiveness of the IRPS, it is important to have a well-developed third-
party software having access to their internal source code. An independent open-source 
code named as the FileChooserDemo programme (SUN Microsystems, http://java.sun. 
com/docs /books/tutorial/uiswing/ components/filechooser.html) has been chosen to 
demonstrate the effectiveness of the IRPS for pairwise test data generation  
(i.e., downloadable from the SUN Microsystem website). The FileChooserDemo is a 
programme to show various Java GUI for selection-based controls (see Figure 3). 

The FileChooserDemo programme has 14 input parameters (one 4-valued parameters, 
two 3-valued parameters, 11 2-valued parameters) as shown in Table 5 and the detail of 
each input parameter value is illustrated in Table 6. 
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Figure 3 FileChooserDemo interface (see online version for colours) 

 

Table 5 The input parameters and the number of each input parameters value for the  
FileChooserDemo 

Parameter P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 

Number of values 4 3 3 2 2 2 2 2 2 2 2 2 2 2 

Table 6 The detail input parameters and the detail of each input parameters value for the 
FileChooserDemo 

Input parameter 
Parameter  

value 1 
Parameter  

value 2 
Parameter  
value 3 

Parameter  
value 4 

P1 – Look and feel Metal Open Just select files Checked 
P2 – Dialogue type CDE/motif Save Just select 

directories 
Not checked 

P3 – File and directory 
options 

Windows 
Checked 

Custom not 
checked 

Just select files 
or directories 

– 

P4 – Show ‘all files’ filter Checked Not checked – – 
P5 – Show JPG and GIF 

filters 
Checked Not checked – – 

P6 – With file extensions Checked Not checked – – 
P7 – Show hidden files Checked Not checked – – 
P8 – Use file view Checked Not checked – – 
P9 – Use preview Checked Not checked – – 
P10 – Embed in wizard Checked Not checked – – 
P11 – Show control buttons Checked Not checked – – 
P12 – Enable dragging Checked Not checked – – 
PI3 – File and directory 

options 
Single Selection Multi selection – – 

P14 – Show file chooser Select Cancel – – 
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On the basis of the number of parameters, considering an exhaustive testing would 
require 41 × 32 × 211 = 73728 test cases to be tested. Now, using pairwise testing and 
applying the IRPS, the test cases are reduced to merely 18 as shown in Table 7. 

Table 7 Suggested test suite 

No. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 

1 M O J.S.F T T T T T T T T T SS S 
2 M S J.S.D F F F F F F F F F MS C 
3 CDE/M C F or D T F F T T F F T T MS C 
4 W C F or D F T T F F T T F F SS S 
5 WC O J.S.F F F F F T T T T F MS C 
6 WC S J.S.D T T T T F F F F T SS S 
7 CDE/M O J.S.F F T T F F F F F T MS C 
8 W S J.S.D T F F T T T T T F SS S 
9 CDE/M S J.S.D T T F F T T T F F SS S 
10 W O J.S.F F F T T F F F T T MS C 
11 M C F or D F T F T F T F T F SS C 
12 WC C F or D T F T F T F T T F MS S 
13 CDE/M O J.S.D F T F T F F F T T MS C 
14 WC O F or D T T F T T T F F T SS S 
15 M S J.S.F T F T F F F T F F SS S 
16 W S F or D F F F F T F T T T MS S 
17 CDE/M C J.S.F F T T T F T F F T MS C 
18 M C J.S.D T F T F T T T F F SS C 

From the generated test case, we are going to investigate whether the 18 suggested test 
cases are sufficient to test FileChooserDemo programme whilst giving acceptable testing 
coverage (i.e., in terms of the programme areas, blocks or paths exercised by the test 
data). In the absence of the specification, we believe, it is sufficient to evaluate our test 
execution based on whether the programme behaves as expected. 

To measure coverage, we have utilised an open-source test coverage tool known as 
EMMA (2006), from Source Forge. Using EMMA, a number of coverage metrics can be 
reported such as class coverage, method coverage, block coverage and line coverage. 
First, the class coverage refers to the ratio of the covered classes over the total number of 
classes. As for the second coverage metric, the method coverage refers to the ratio of the 
covered methods over the total number of methods. The third metric is the block 
coverage, defined as the total covered blocks over the total blocks. Lastly, the line 
coverage is defined as the covered lines over the total number of lines. During the 
execution of the 18 suggested test cases, we do not detect any error and the programme 
output is as expected. Using EMMA, we obtain the following coverage results as shown 
in Table 8. These metrics are calculated based on the FileChooserDemo implementation 
consisting of 9 classes, 42 methods, 2136 blocks and 450 lines. 

Referring to the coverage results tabulated in Table 8, it can be deduced that the 
pairwise test data set generated by IRPS is reasonably effective in covering various 
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coverage metrics (i.e., 100% of class coverage, 83% of method coverage, 96% of block 
coverage and 94% of line coverage). In fact, a closer look to the source code reveals that 
uncovered code comes from the exception handling mechanism as well as dead code 
(which cannot be detected even with exhaustive combinations). Thus, we conclude that 
IRPS is an effective pairwise testing strategy for detecting and covering all the coverage 
metric for FileChooserDemo program. 

Table 8 Percentage coverage 

Class coverage (%) Method coverage (%) Block coverage (%) Line coverage (%) 

100 83 96 94 

4.3 IRPS behaviour and its enhancement in terms  
of test size and execution time 

To perform the evaluation, we have applied IRPS to three series of system 
configurations. In the first series, the number of parameters (p) and the number of 
variables (v) are equal to each other, the numbers (n) are (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13 and 16), respectively. In the second series, the number of parameters is fixed to be 5, 
and the number of variables is varied from 2 to 10. 

Tables 9–11 show the experimental results for the three series of system 
configurations, respectively. The columns in the three tables are self-explanatory. Note 
that the execution times are shown in seconds, and all the results were collected using a 
laptop running Windows Vista with 1.6 GHZ CPU and 512 MB memory. The entire tool 
is implemented using Java Development Kit 1.4 (JDK1.4) platforms. 

For pairwise interaction, the optimal size can be viewed as the product of the two 
maximum numbers of variables. This observation can be seen in the case of 
CA1, CA2, CA3, CA4, CA6, CA7 and CA10 from Table 9. Similar observation can be 
seen in the case of CA13, CA14 and CA16 from Table 10. The generated test case is also 
minimal in size, as depicted in CA20, CA21, CA22, CA23 and CA24 from Table 11, 
respectively. Here, we conclude that the size of generated test case depends linearly on 
the optimal size of the generated test case. 

Table 9 Results for n = 2 to 11 n n-valued parameters 

Case name CA1 CA2 CA3 CA4 CA5 CA6 CA7 CAS CA9 CA10 

N = p = v 2 3 4 5 6 7 8 9 10 11 
Size 4 9 16 25 44 49 64 116 149 121 
Time <0.001 <0.001 0.011 0.015 0.087 0.034 0.077 240.2 16.35 0.121 

Table 10 Results for five parameters with 2–10 values 

Case name CA11 CA12 CA13 CA14 CA15 CA16 CA17 CA18 CA19 

Value (v) 2 3 4 5 6 7 8 9 10 
Size 6 12 16 25 44 49 78 96 114 
Time 0.01 0.015 0.016 0.015 0.077 0.057 0.133 0.178 0.184 
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Table 11 Results for 2–10 parameters with 5 values 

Case Name CA20 CA21 CA22 CA23 CA24 CA25 CA26 CA27 CA28 

Parameter (p) 2 3 4 5 6 7 8 9 10 
Size 25 25 25 25 25 37 41 44 45 
Time 0.053 0.054 0.114 0.015 0.031 0.32 0.78 1.45 1.928 

As far as execution time is concerned, we observe that the execution time is significantly 
independent on the number of parameters and values when the size is not minimal.  
This is due to the nature of the algorithm that generates the heavy-weighted test case first, 
deletes them from the Pi list, and then searches again for the uncovered pairs. In this way, 
the size of the generated test case and the execution time depend on the phenomena of 
greedy algorithm rather than the number of parameters and values. 

We observe that the size and execution time of CA9 (10 10-valued parameters)  
is greater than CA10 (11 11-valued parameters), according to Table 9, and the size of 
CA17 (five 8-valued parameters) is greater than CA7 (eight 8-valued parameters) 
according to Tables 9 and 10, respectively. Here, we conclude that the behaviour of IRPS 
is unpredictable in term of the execution time owing to the exhaustive search nature when 
drifting from optimal size, but running the test case generator produces the same test set 
on every case (thus, IRPS is deterministic). This gives us the motivation for further 
optimisation by introducing adding artificial variables and parameters in generation IRPS 
test case catalogue. The complete discussion with illustrative example is given in Younis 
et al. (2008a). Thus, by applying IRPS_RA and IRPS_ORA (Younis et al., 2008a),  
the test case CA9 is built fom CA10 and the size will be 120 and 118, respectively. 
Similarly, we built CA17 from CA7 and the size will be 64 test cases only. 

4.4 Comparison with other strategies 

As for comparison, we have identified the following existing strategies that support 
pairwise testing: AETG (Cohen et al., 1996, 1997), AETG2 (Shiba et al., 2004; Cohen  
et al., 2003), IPO (Lei and Tai, 2002), SA (Shiba et al., 2004), GA (Shiba et al., 2004), 
ACA (Shiba et al., 2004) and All Pairs tool (http://www.satisfice.com). We consider 
eight systems namely S1: three 3-valued parameters, S2: four 3-valued parameters,  
S3: 13 3-valued parameters, S4: 10 10-valued parameters, S5: 10 15-valued parameters, 
S6: 20 10-valued parameters, S7: 10 5-valued parameters and S8: one 5-valued 
parameters, eight 3-valued parameters and two 2-valued parameters. The system 
configurations are AETG2 & SA: C++, Linux, Intel P IV 1.8 GHZ; IPO: Java, Windows 
98, Intel P II 450 MHZ; CA, & ACA: C, Windows XP, P IV 2.26 GHZ; All Pairs: Perl, 
Windows Vista, P IV 1.6 GHZ, 512 MB RAM; G2Way, Jenny: Intel P IV 1.8 Ghz, 512 
MB RAM, C++ programming language, Windows Vista operating system; IRPS: Java, 
Windows Vista, P IV 1.6 GHZ, 512 MB RAM. 

Table 12 shows the size of the test set generated by each strategy, and Table 13 shows 
the execution time for each system. All the problem instances and data for the existing 
strategies are taken from Lei and Tai (2002), Shiba et al. (2004) and Cohen et al. (2003) 
except for All Pairs tool (available freely, which we run side by side with our tool). 
Entries marked with NA are data that are not available in these papers. 
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Referring to Table 12, IRPS always generates smaller test cases than ALL Pairs and 
in some cases generates less (i.e., S4, S5, S6 and S7) or equals to that of IPO (i.e., 
S2, S3). IRPS also generates less cases compared with AETG2 (except S6), GA and 
ACA (except S8). Whereas IRPS outperformed AETG in S8, AETG outperformed IRPS 
in S3 and S6. Finally, SA outperformed IRPS (in S3, S6 and S8). Unlike AETG, AETG2, 
GA, ACA and IRPS, SA does not have the practical advantage of the greedy algorithm, 
as the implementation is not based on such an algorithm. Here, in the absence of the 
greedy algorithm, the construction of the test set cannot utilise the useful property that the 
test case created earlier has more significant impact as far as the interaction coverage is 
concerned (Shiba et al., 2004). 

Table 12 Comparison on the size of the test set generated by existing strategies 

System AETG AETG2 IPO SA GA ACA ALL Pairs G2Way Jenny IRPS 

S1 NA NA NA NA NA NA 10 10 9 9 
S2 9 11 9 9 9 9 10 10 13 9 
S3 15 17 17 16 17 17 22 19 20 17 
S4 NA NA 169 NA 157 159 177 160 157 149 
S5 NA NA 361 NA NA NA 390 343 336 321 
S6 180 198 212 183 227 225 230 200 194 210 
S7 NA NA 47 NA NA NA 49 46 45 45 
S8 19 20 NA 15 15 16 21 23 23 17 

Admittedly, no fair comparison can be made in terms of execution time from existing 
strategies owing to the differences in the computing environments, and the unavailability 
of the open-source code or executable code to run in our platform (with the exception of 
ALL Pairs tool). Nevertheless, as a general observation, we believe that the execution 
time for IRPS is still acceptable when compared with other strategies (see Table 13).  
Not considering the computing differences, IPO outperforms all other strategies.  
One reason may be that IPO employs deterministic algorithm and needs only one run. 
Thus, IPO requires much less time to execute than others. SA includes the time taken to 
find all sized test sets through binary search process, hence, requiring more run time than 
others. In short, no strategies can clearly be dominant in all. 

Table 13 Comparison on the time taken to generate test set (in seconds) for existing strategies 

System AETG AETG2 IPO SA GA ACA ALL Pairs G2Way Jenny IRPS 

SI NA NA NA NA NA NA 0.08 0.047 0.19 <0.001 
S2 NA NA NA NA NA NA 0.23 0.062 0.2 0.004 
S3 NA NA NA NA NA NA 0.45 0.25 0.312 39.23 
S4 NA NA 0.3 NA 866 1180 5.03 2.906 0.43 16.35 
S5 NA NA 0.72 NA NA NA 10.36 7.438 2.392 1124 
S6 NA 6001 NA 10,833 6365 7083 23.3 1753 3.33 3213 
S7 NA NA 0.05 NA NA NA 1.02 0.687 0.27 1.928 
S8 NA 58 NA 214 22 31 0.35 0.33 0.251 2.02 
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5 Conclusion and future work 

In this paper, we propose a novel deterministic computational strategy for pairwise 
testing with efficient data structure for storing and searching pairs. Our initial evaluation 
results are encouraging particularly in terms of test suite size within acceptable execution 
time in terms for optimality as well as comparisons with other strategies. Also, the paper 
includes a case study that demonstrates the ease of use of IRPS in the generation of test 
set. As part of our future work, we are currently investigating a new parallel search 
algorithm for IRPS to be implemented under the GRID environment. Also, our aim is to 
generalise IRPS to support N-way testing. Finally, we will support further test case 
minimisation by using input and output relationship. 
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